

Technical Server Summit 2014

Microsoft Lync im Netzwerk SIP, RTP, ICE, QoS, CAC

Frank Carius Net at Work GmbH

Steckbrief

 Frank Carius (<u>www.msxfaq.de</u>)

- Schwerpunkte
 - Lync, Exchange
 - Infrastruktur
 - Mailverschlüsselung und Signierung, DE-Mail
- Was treibt mich an
 - Wissen zu mehren
 - Lösungen zu entwickeln
 - Andere vor Fehlern bewahren

- Net at Work (<u>www.netatwork.de</u>)
 - Standort Paderborn, Gegründet 1995, 43 Mitarbeiter
 - IT-Systemintegration und Softwarehaus
 - Kunden: klassischer Mittelstand bis Enterprise
 - NoSpamProxy und enQsig

Microsoft Partner

Gold Communications
Gold Collaboration and Content
Gold Application Development

Wo sehen Sie sich?

IT-Systemhaus

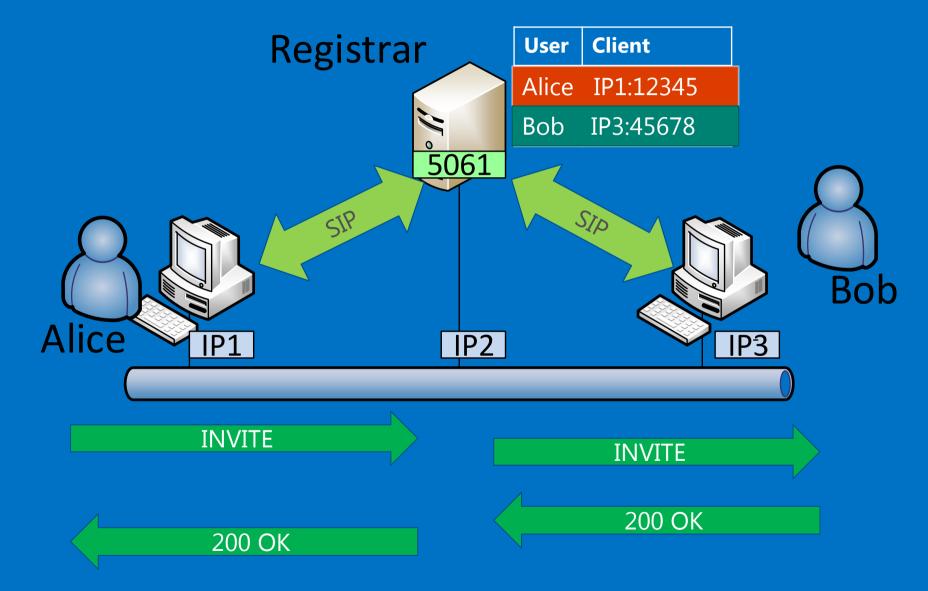
- Ethernet, Switches, Router, TCP/IP, WAN
- Active Directory, LDAP, DNS
- Serverhardware, SAN, WAN
- PCs, Software, Zertifikate
- Mailserver, Faxserver
- SQL-Reporting
- Powershell
- Supportverträge
- ●Telefonie, Telefone
- SISDN-Anschlusstechnik
- Sprache, Fax, Nummern

TK-Systemhaus

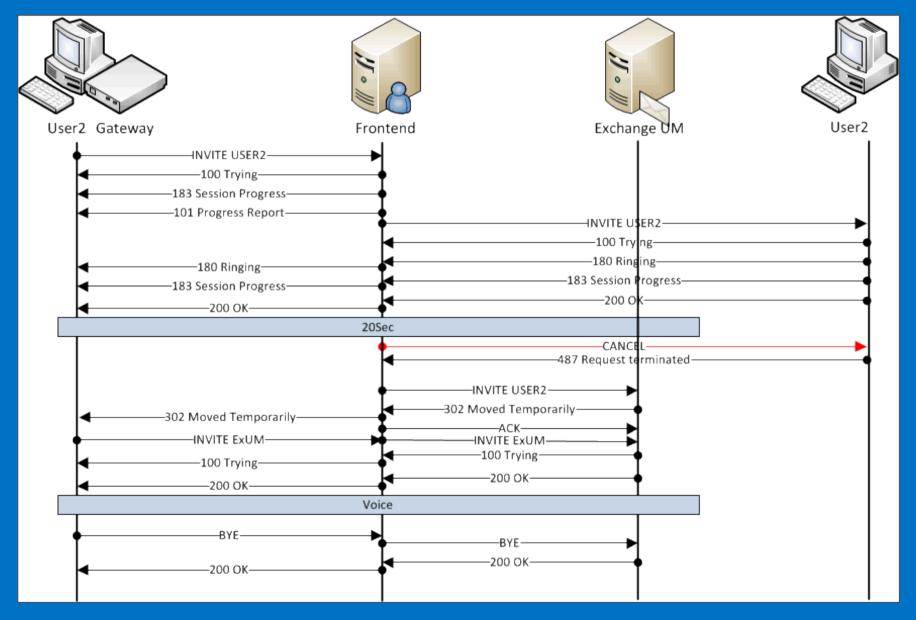
- UK0, S0, S2M, X.25,
- Rufnummernpläne, NPI, TON, SS7, DDI, DECT
- Anlagen, Baugruppen
- Telefone, Headsets
- © Callcenter, Voicemail, Abrechnung, Least Cost Routing
- Monferenzsysteme
- Wartungsverträge
- Ethernet, LDAP, Provisioning
- TCP/IP, QoS,
- Gruppenrichtlinien, Desktops

VoIP als Gefahr

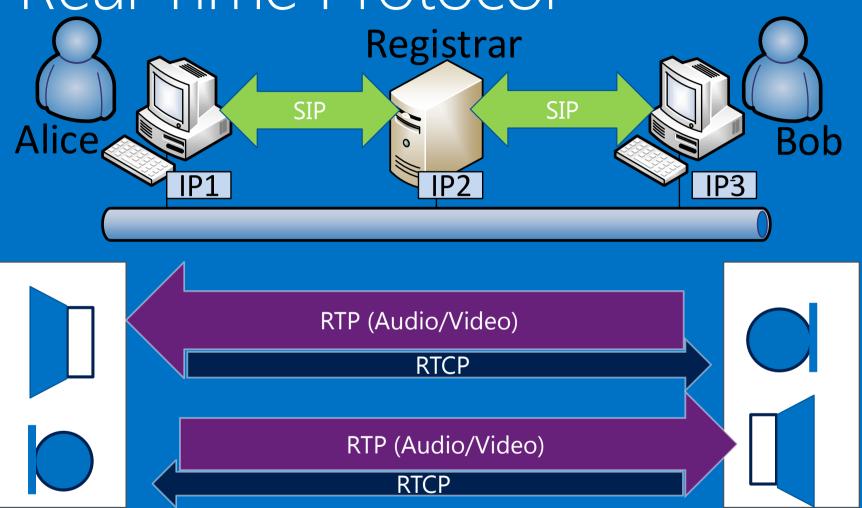
- Persönliche Vorbehalte und Ängste
 - Produktwechsel entwertet TK-Wissen
 - Gewachsene Strukturen
 - Wissensaufbau erforderlich (TK und IT)
 - Interne TK-Fachabteilung ist nicht immer ...
 - Wer ist der bessere Admin?
 - Die Dienstleistungsbranche ändert sich
- Funktionsumfang
 - · Anrufe, Weiterleitung, Rückfrage, Rückruf bei Besetzt,
 - Team, CallPark, CallPickup, VoiceMail,
 - Video-Konferenzen, Federation, Skype)
- TK-Anbieter haben dazu gelernt
 - IM/Presence
 - Koexistenz
 - CuciLync u.a.


,	Technik	Lync	TK-Telefon	TK-Softclient		
Präsenz Instant Message		Umfangreich	Einfach	Ja		
		Umfangreich	Bedingt	Teilweise		
	Konferenz	Umfangreich	Nur Audio	Audio/Video separat		
	Telefonie	Gut	TK-spezifisch	TK-spezifisch		

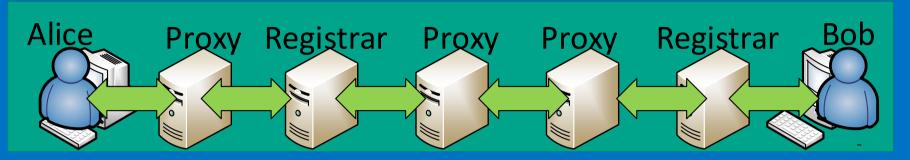
Was ist eigentlich SIP und RTP?



SIP - Signalisierung



SIP ist etwas mehr ...



RTP – Real Time Protocol

Audio und Video werden (fast) immer direkten übertragen. Das "Netzwerk" ist das "Switchboard", nicht die TK-Anlage

SIP – mit mehreren Stationen

INFO :: Data Received -80.66.20.22:443 (To Local Address: 192.168.10.127:1255) 3807 byt INFO :: SIP/2.0 200 OK

ms-user-logon-data: RemoteUser

From: "Carius, Frank"<sip:frank.carius@netatwork.de>;tag=2de808a726;epid=2385f4c267

To: <sip:xxxxxx.xxxxxxe@bertelsmann.de>;tag=2D670080

CSeq: 1 SUBSCRIBE

Via: SIP/2.0/TLS 192.168.10.127:1255;received=84.128.60.79;ms-received-port=1255;ms-rece

Record-Route: <sip:gtlbmllyd0100.bagmail.net:5061;transport=tls;ms-fe=GTLBMLLYD0102.bagm

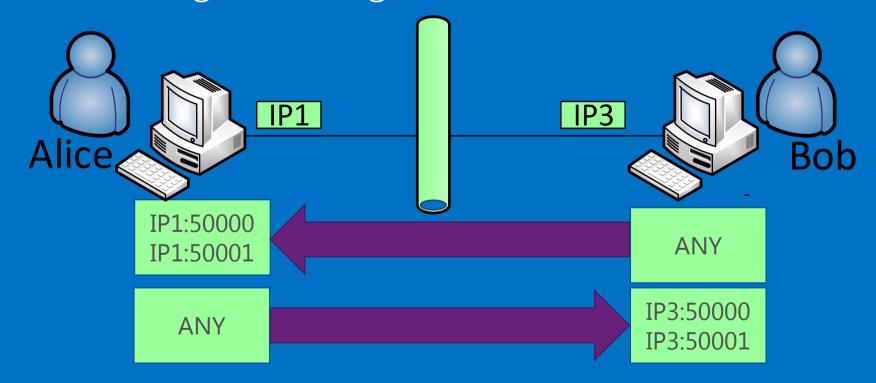
Record-Route: <sip:csac.bertelsmann.de:5061;transport=tls;lr>

Record-Route: <sip:nawlyncedge.netatwork.de:5061;transport=tls;lr>

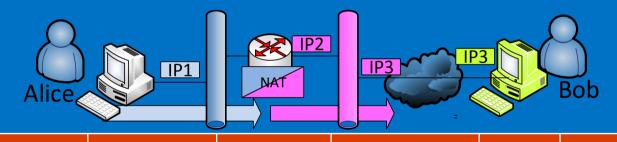
Record-Route: <sip:NAWLYNC001.netatwork.de:5061;transport=tls;opaque=state:F;lr;received-Record-Route: <sip:sip.netatwork.de:443;transport=tls;opaque=state:Ci.R6440f00;lr;ms-rou

ms-edge-proxy-message-trust: ms-source-type=AutoFederation;ms-ep-fgdn=nawlyncedge.netatw

VoIP - Sicherheit auf dem Kabel


Komponente	Angriffsvektoren	Schutzmöglichkeit
SIP Signalisierung	 Anmeldedaten abfangen Spoofing fremde Kosten telefonieren Verbindungsdaten abgreifen "Routen" ermitteln 	 TLS Verschlüsselung (5061 statt 5061) Sichere Anmeldeverfahren Geschlossene Netzwerke
RTP-Audio/Video	MithörenMitschneiden	Verschlüsselung (SRTP)

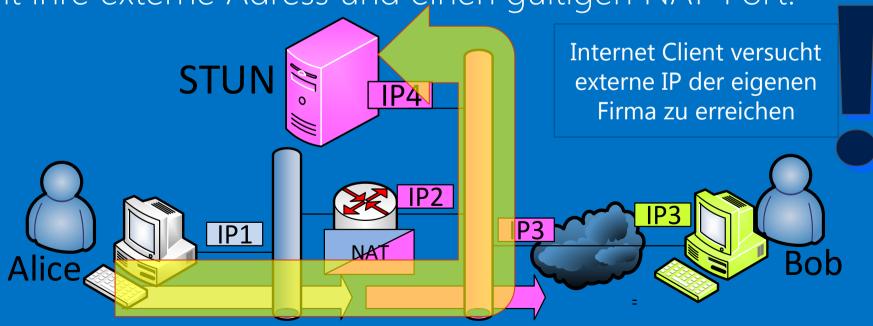
- SIP/TLS und SRTP empfohlen
 - SRTP geht nur mit SIP/TLS
 - Die Einmalschlüssel werden per SIP im SDP übertragen
 - Lync Standard ist "SIP TLS-Only" und "Media Encryption required"
- Leider machen nicht alle Endgeräte mit
- Sichere Server und Clients sind ein anderes Thema


Der direkte Weg

- Jeder Client öffnet bei sich lokal Ports
- Diese "IP-Adresse:Port" Kombination addiert er als Kandidaten
- Sind nur direkt im gleichen "gerouteten LAN" erreichbar

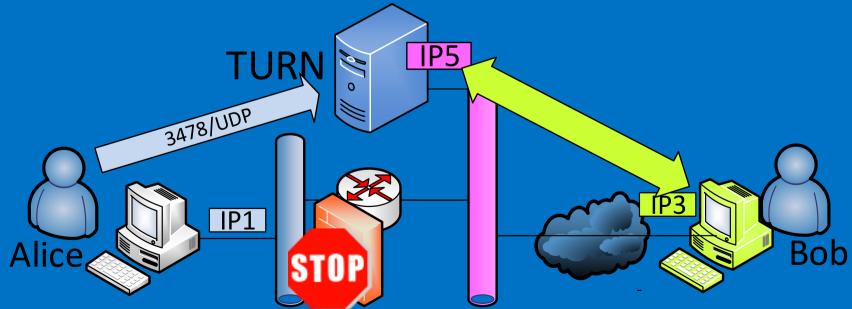
NAT: Nicht alle sind gleich!

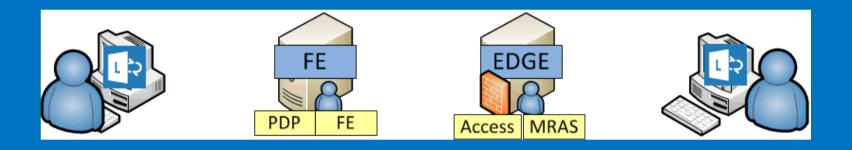
- NAT-Geräte ordnen jeder internen "IP-Adresse:Port" Paarung eine externe "IP-Adresse:Port"-Paarung zu
- Aber wer kann auf diese Paarung von extern senden?



Тур	Freiheit	Rückkanal	Any: Any	ZielIP: Any	ZielIP: ZielPort	
Full Cone	Offen	Jeder, der den zugeordneten Port kennt, kann senden	Ja	Ja	Ja	
Address Restricted	Weniger	Nur die Ziel IP kann antworten, aber mit jedem beliebigen Source-Port	Nein	Ja	Ja	
Port-Restricted	Minimal	Rückweg nur von der Ziel-IP mit dem Port	Nein	Nein	Ja	
Symmetrisch Sonderfall: Ausgehend werden für jede Verbindung zu anderen Hosts andere Source-Ports verwer Port kaum zu erraten						

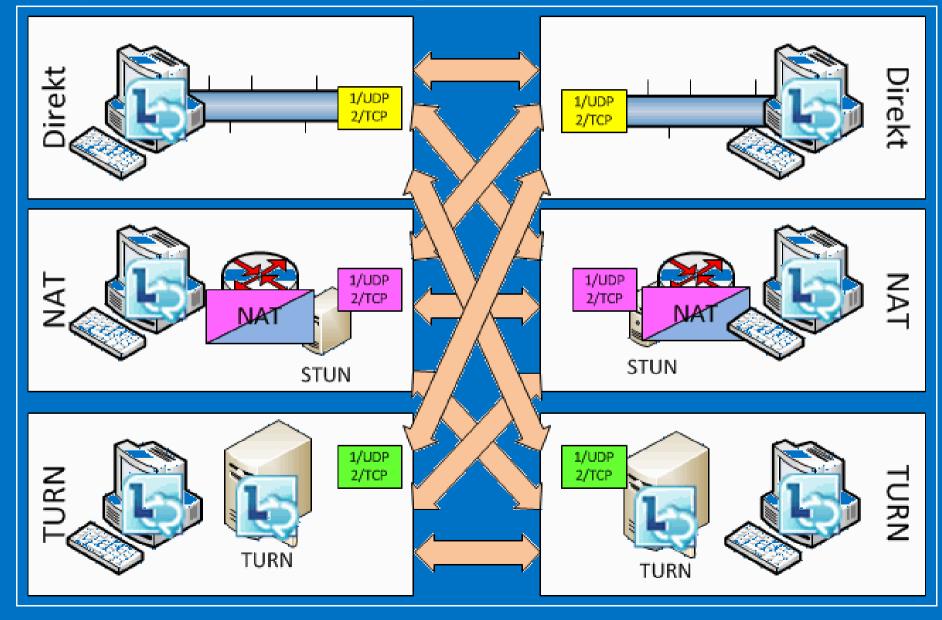
NAT im Netzwerk

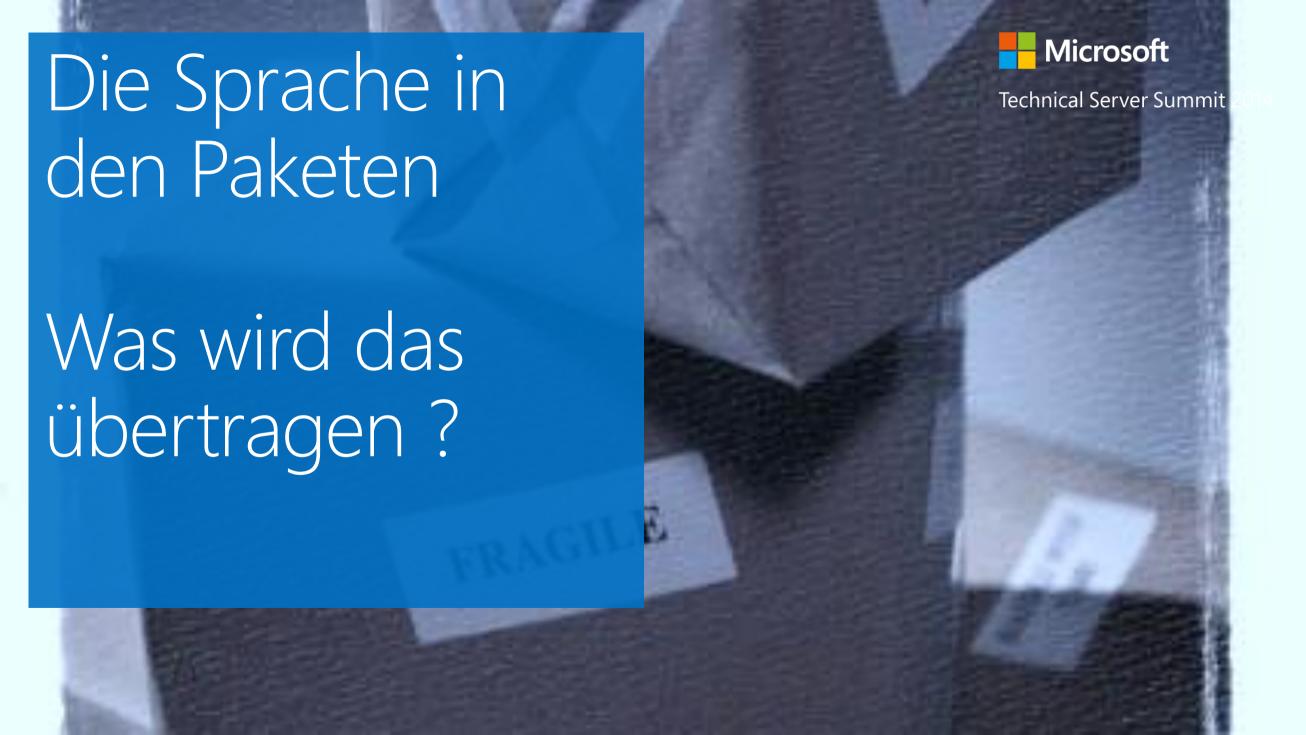

- Alice kann BOB nur über NAT erreichen
- Ohne "Hilfe" kann Alice nicht ihre "externe IP" ermitteln
- Bob weiss nicht, wie er zu Alice kommt
- Session Traversal Utilities for NAT (STUN)
- STUN-Server kann von Alice gefragt werden und meldet IP2:Port
- Alice kennt ihre externe Adress und einen gültigen NAT-Port.


Kandidaten und TURN – Über Bande spielen

- Es gibt einen Server, der vom Client erreicht werden kann
- Der TURN-Server "verleiht" gültige IP-Adressen:Port-Kombinationen
- Alice authentifiziert sich am TURN-Server
- TURN-Server reserviert Kandidaten bereit und leitet Pakete weiter
- Alice "kennt" Kandidaten, unter denen Sie erreichbar ist.

Authentifizierung am Lync Edge

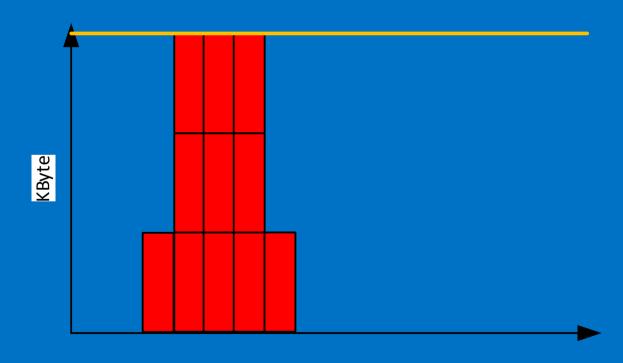



Kandidatenspiele Client A Internet Home Network NAT POOL EDGE **VPN** Client B NAT Host Client A

Kandidaten im SDP

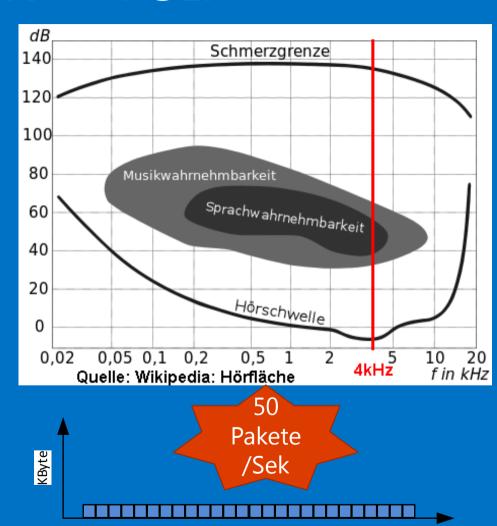
```
a=1ce-ufrag:ZMgo
a=ice-pwd:wP8epG6CgHGSrnIPlrHsVr6T
a=candidate: 1 1 UDP 2130706431 192.168.102.31 10996 typ host
a=candidate: 1 2 UDP 2130705918 192.168.102.31 10997 tvp host
a=candidate: 2 1 UDP 2130705919 192.168.56.1 22320 tvp host
a=candidate: 2 2 UDP 2130705406 192.168.56.1 22321 typ host
a=candidate: 3 1 UDP 2130705407 192.168.182.1 7622 tvp host
a=candidate: 3 2 UDP 2130704894 192.168.182.1 7623 tvp host
a=candidate: 4 1 UDP 2130704895 192.168.23.1 31878 tvp host
a=candidate: 4 2 UDP 2130704382 192.168.23.1 31879 tvp host
a=candidate: 5 1 UDP 2130704383 192.168.88.120 29860 tvp host
a=candidate: 5 2 UDP 2130703870 192.168.88.120 29861 tvp host
a=x-candidate-ipv6:6 1 UDP 33551871 2001:0:5ef5:79fb:3876:1945:3f57:99e0 27984 typ host
a=x-candidate-ipv6:6 2 UDP 33551358 2001:0:5ef5:79fb:3876:1945:3f57:99e0 27985 typ host
a=candidate: 7 1 TCP-PASS 174453759 80.66.20.21 55789 typ relay raddr 192.168.102.31 rport 13717
a=candidate: 7 2 TCP-PASS 174453246 80.66.20.21 55789 typ relay raddr 192.168.102.31 rport 13717
a=candidate:8 1 UDP 184545791 80.66.20.21 59646 typ relay raddr 192.168.102.31 rport 32126
a=candidate:8 2 UDP 184545278 80.66.20.21 51707 tvp relay raddr 192.168.102.31 rport 32127
a=candidate: 9 1 TCP-ACT 174845951 80.66.20.21 55789 typ relay raddr 192.168.102.31 rport 13717
a=candidate:9 2 TCP-ACT 174845438 80.66.20.21 55789 typ relay raddr 192.168.102.31 rport 13717
a=candidate:10 1 TCP-ACT 1684794879 192.168.102.31 13717 typ srflx raddr 192.168.102.31 rport 13717
a=candidate:10 2 TCP-ACT 1684794366 192.168.102.31 13717 tvp srflx raddr 192.168.102.31 rport 13717
a=cryptoscale:1 client AES CM 128 HMAC SHA1 80 inline:JM5R8bFurPPE0BY3hQ0x/LB9tJ8BMWyGkrcfpuHs|2^31|1:1
a=crypto:2 AES CM 128 HMAC SHA1 80 inline:vL9TEWKTPzz/JEGGZY0AzwQvWtSXr8VGpfR20403|2^31|1:1
a=crvpto:3 AES CM 128 HMAC SHA1 80 inline:j3bYAZDTVE+YLRB+f0FLxb+HJNzkKnUUwk0vR4HK|2^31
a=maxptime:200
```

ICE - Speed-Dating



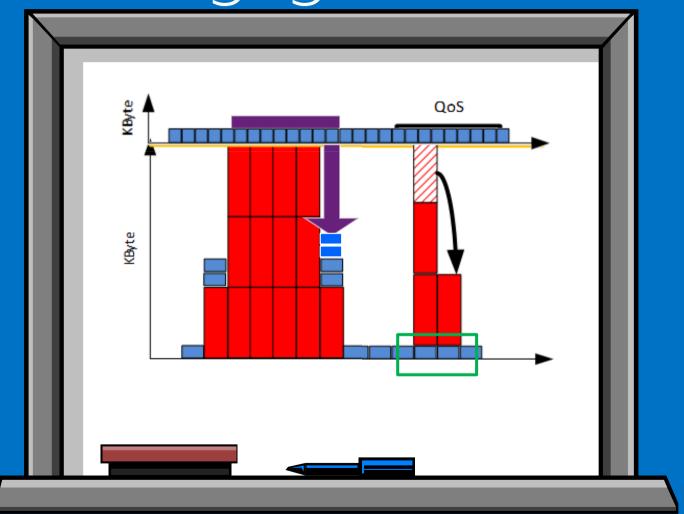
Netzwerkmathematik - Daten

- Ethernet
 - Paketgröße bis zu 1516 Byte
 - CSMA/CD heute irrelevant
- Beispiel 100 Mbit-Lan
 - Bis zu 100.000 Bytes/Sek
 - 65963 Pakete/Sek (a 1516 Byte) (idealisiert)
- Beispiel PowerPoint (10 Mbyte)
 - 100MBit über 100MBit-Link ► 1 Sek Dauer
 - Bei 1.500 Byte/Paket ► 6.666 Pakete/s
- Gigabit ?
 - Hat noch nicht jeder am Desktop
 - Ultraboot/Tablets mit WiFi oder USB-Netzwerk
 - WAN-Strecken
 - Switch Trunks und Uplinks



Netzwerkmathematik - VoIP

- VoIP = Sprache
 - Der Mensch hört nicht alles!
 - 8kHz "Abtastung" (Mono) gewünscht
 - 64kBit = ISDN (G.711 Codec)
- Analog zu Digitalwandung
 - 1 Sek Sprache mit 64kbit Abtastung
 ▶ 8 Kilobyte/Sek
 ▶ 6 Pakete a 1333 Bytes
 ▶ 1sec/6 = 166ms "Inhalt"
 - 166ms minimale Verzögerung!!
- Abtastung für VoIP
 - 20ms Abschnitte ► 50 Frames/Sek
 - 160 Byte Nutzdaten/Paket zzgl. IP Overhead
 - Ca. 95kbit (G.711)
- Codecs
 - Kompression, ECC
 - Wideband: 16.000 Samples
 - Stereo f
 ür Konferenzen
- SIP ist bedingt vernachlässigbar
 - Ca. 4-8 kbit/User/Sek



Die Berechnung ist stark vereinfacht nur zu Demonstrationszwecken gedacht

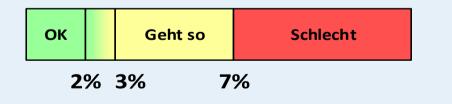
Auf dem Kabel – David gegen Goliath

- Große "Peak-Pakete"
 - PPT, Softwareverteilung
- Kleine VoIP-Pakete
 - Dauerläufer
 - Zeitkritisch
- LAN/WAN
 - Bandbreite ist beschränkt
- QoS
 - priorisiert " den Verkehr
 - verwirft Pakete
- VoIP-Software
 - Wechselt Codec (Narrowband, Kompression z.B. G792)
 - Unterbindet Verbindungen (z.B. CAC)

VoIP Kennzahlen im Netzwerk

Laufzeit/Roundtrip

- Wie lange sind die Daten "unterwegs"?
- Wie schnell ist der Transporter unterwegs?
- "Network Round Tipp Time (NTT)


Jitter

- Wie gleichmäßig ist der Transport
- Empfänger muss puffern.
- Einfluss auf Laufzeit

Paket Loss

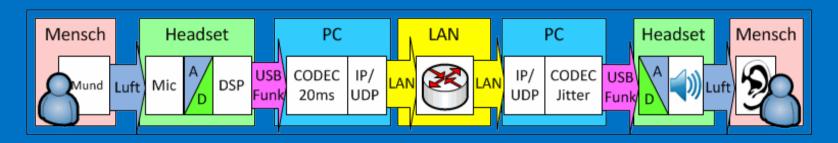
- Wenige Prozent verlorene Pakete sind tolerierbar
- Ein Paket enthält 20ms "Ton"
- Burst-Loss-Problem.

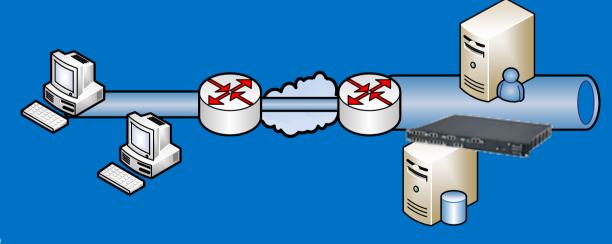
Bandbreite

- Genug um die anderen drei Werte "grün" zu halten
- Audio braucht ca. 40-160kBit (je nach Codec)
- Video braucht ca. 150kBit-2MBit (HD) (pro Stream)

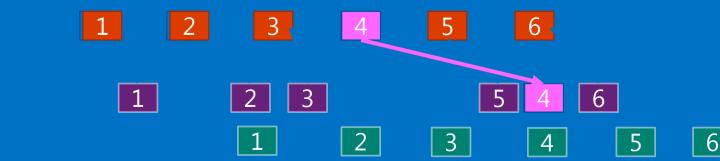
Alle Werte hängen voneinander ab.

Bandbreite


- Bandbreite und Geschwindigkeit
 - Der Weg ist selten mehrspurig
 - Es gibt nur eine Gleis pro Richtung
 - Bit/Sek steht für die Reisegeschwindigkeit
 - Überholverbot auf der Strecke
- HyperV-Netzwerke
 - Virtuelle Switches
 - Virtuelle Netzwerke
 - QoS in virtuellen Welten
 - 10 GBit und NPAR
- VLAN
 - Getrennte logische Netze
 - Gemeinsame Bandbreite
- VPN
 - Overhead (UDP in HTTPS)



Laufzeit / Latenzzeit – Wo bleiben die ms?



- Echo Cancellation (30-75ms)
- USB-Bus
- Versand: IP-Sampling: 20ms
- Netzwerk
 - WAN-Strecken
 - VPN-Strecken
- Empfang: Jitter-Buffer 20-80ms
- USB-Bus

Jitter und Jitterbuffer

- Sender überträgt kontinuierlich Daten
- Laufzeit zwischen Sender und Empfänger ist nicht gleich
 - z.B. Unterschiedliche Wege
 - Andere Verkehrsteilnehmer
- Empfänger muss einen FIFO-Buffer vorhalten.
- Reihenfolge wiederherstellen
- Unterbrechungen" vermeiden, ggfls. FEC-Codes
- Gute Codecs passen den Buffer dynamisch an.
- Buffer kostet "Zeit" -> Latenz nimmt zu

Anforderungen

Datenprofil	Bandbreite	Latenzzeit	Jitter	Paket Loss
Große DatenBetriebssysteminstallationSoftwareinstallation/UpdatesReplikation, Backup	Hoch	Minuten	Unkritisch	TCP Retansmit
AnwenderdatenWord, Excel, PowePoint-DateienCAD-Dateien	Mittel/Hoch	Sekunden	Sekunden	TCP Retansmit
Streaming DatenYouTube-Videos etc."Radio", WebCast, Training	Mittel	Mehrere Sekunden Unidirektional	Mehrere Sekunden Player "puffern"	(Bild-)Qualität leidet
InfrastrukturDNS-AbfragenAD-Replikation	Niedrig	Sekunden	Unkritisch	UDP Retry TCP Retransmit
VoIPAudio (100kit/Stream)Video (150kbit - 2MBit)	Niedrig/Mittel (pro Stream)	<80ms	<20ms	Codec und Qualität

Fragerunde

1...n Standorte, WAN

Skype oder Lync Online?

QoS und "schwache Leitungen" / WAN-Links ?

Anforderungen an ...

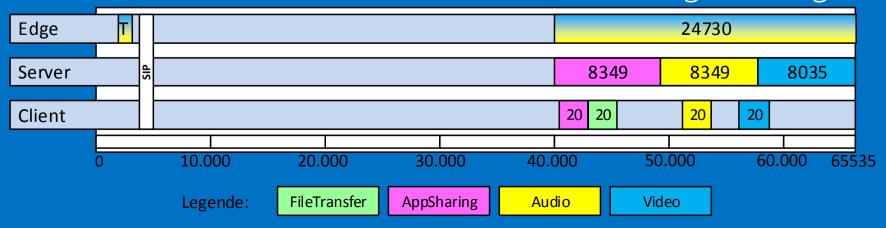
- ...das Netzwerk
 - Garantierte Mindestbandbreite
 - Niedrige Latenzzeit/Roundtrip-Zeit
 - Wenig Paketverluste
 - Jitter niedrig halten
 - Effektives Monitoring
- ... an die VoIP-Plattform
 - Kennzeichnen der VoIP Pakete nach Dienst
 - Überlastung durch Applikation steuern (Gassenbesetzt)
 - Monitoring

Mit QoS können Pakete an einer Stelle klassifiziert werden, so dass an anderer Stelle Entscheidungen zur Weiterleitung möglich sind.

QoS hilft nicht bei zu wenig Bandbreite, sondern verteilt sie "um"

Datenverkehr kennzeichnen!

Netzwerk-Team



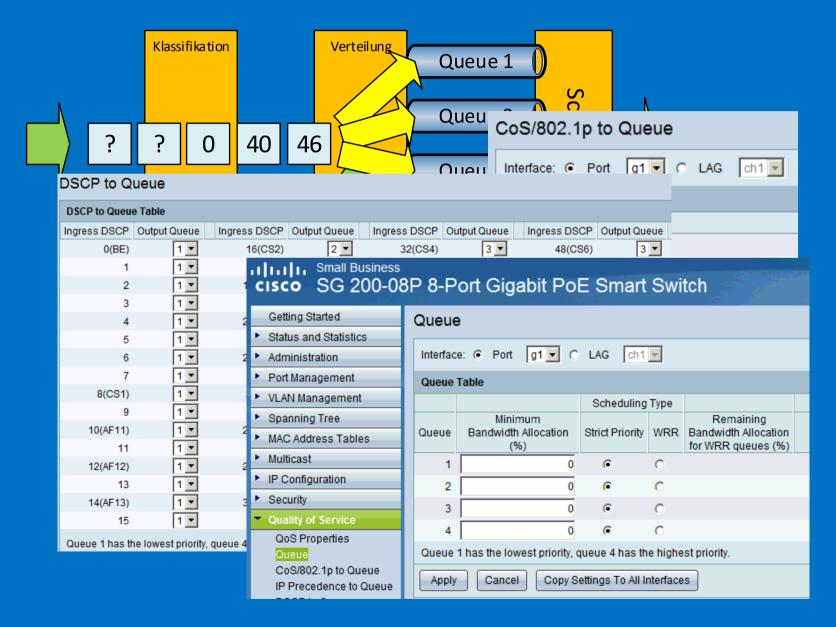
IT-Personal

- "Chef über das LAN"
- Oft auch über die TK-Technik
- Steuert die Router, Switches, etc.
- Kann nur anhand von Switch-Ports, IP-Adressen oder IP-Ports kennzeichnen

- Chef über Client und Server
- Kennt die Anwendung und Betriebssystem
- Verwaltet Betriebssystem
- Konfiguriert
 Softwarebegrenzungen (CAC)

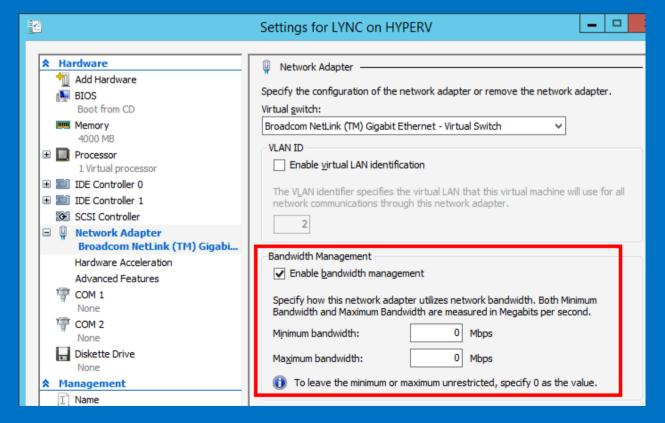
QoS auf dem Kabel

- Layer 2 CoS/802.1p
 - Teil des VLAN-Tags
- IPv4


```
Frame Details
  Frame: Number = 7, Captured Frame Length = 214, MediaType = ETHERNET
# Ethernet: Etype = Internet IP (IPv4), DestinationAddress: [5C-FF-35-00-6D-E5], SourceA
- Ipv4: Src = 192.168.100.107, Dest = 192.168.102.63, Next Protocol = UDP, Packet ID
  DifferentiatedServicesField: DSCP: 46, ECN: 0
      DSCP: (101110..) Differentiated services codepoint 46
     ECT: (.....0.) ECN-Capable Transport not set
     .... CE:
            (......0) ECN-CE not set
  Frame Details
     Frame: Number = 300, Captured Frame Length = 74, MediaType = ETHERNET
   Fig. Ethernet: Etype = IPv6, DestinationAddress: [5C-FF-35-00-6D-E5], SourceAddress: [00-15-5D-66-4E-02]
   - Ipv6: Next Protocol = TCP, Pavload Length = 20
     - Versions: IPv6, Internet Protocol. DSCP 0
                (0110.....) IPv6, Internet Protocol, 6(0x6)
        ...Version:
        DSCP:
                 (.......0......) ECN-Capable Transport not set
        ECT:
        CE:
                 (....) ECN-CE not set
```

• IPv6

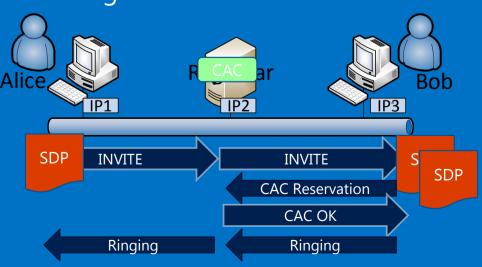
Klassifizierungszeichen


Klasse	cs	DSCP (hex)	DSCP (dec)	Prio	Drop	Einsatz
EF	-	2E	46	5(high)	0	VoIP Audio
VA	-	2C	44	5 (high)	0	
AF41	-	34	52	4	Niedrig	VoIP Video
AF42	-	36	54	4	Mittel	
AF43	CS7	38	56	4	Hoch	IP Routing Protokolle
AF31	-	26	38	3	Niedrig	
AF32	CS5	28	40	3	Mittel	
AF33	CS6	30	48	3	Hoch	IP Routing Protokolle
AF21	CS3	18	24	2	Niedrig	SIP Signalling
AF22	CS4	20	32	2	Mittel	
AF23	-	22	34	2	Hoch	
AF11	-	10	16	1	Niedrig	
AF12	-	12	18	1	Mittel	
AF13	-	14	20	1	Hoch	
-	CS2	10	16	-	Hoch	
-	CS1	8	8	-	Hoch	
Default	Default	00	00	-	-	

QoS auf dem Switch

QoS und HyperV

- HyperV Bandwidth Management
 - Pro VM einstellbar
 - Keine "Priorisierung"
 - Addition auf dem virtuellen Switch
- HyperV NPAR
 - Virtuelle NICs im Host
 - Richtung beachten
 - LAN-Switch relevant



Wo funktioniert QoS noch?

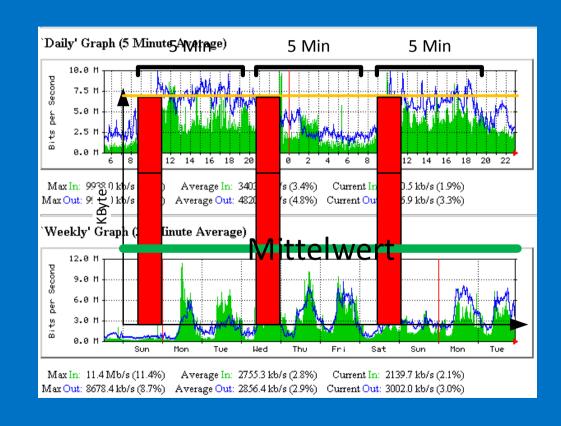
	Technisch möglich	Ist es erforderlich?		
Lokales Subnetz	Switch CoS/802.1q	Selten		
Lokaler Standort	Switch CoS/802.1q	Selten		
HyperV-Switches	HyperV-QoS NIC Partitioning (NPAR)	Ja, sehr wichtig		
WiFI	Wireless Multimedia Extensions	Ja. Es gibt aber Alternativen		
MPLS	DSCP – oft aber nur 7 Klassen	Ja, wenn VoIP über WAN		
VPN	Ja und Nein	Ja aber kaum umsetzbar		
Internet	Ja, aber Provider bietet es (noch) nicht an.	Nicht allgemein möglich Wohl aber für		

Call Admission Control

- QoS ist nur der Anfang
 - QoS versucht die RTP-Pakete "gut genug" zu übertragen.
 - Dazu gibt es eine garantierte Bandbreite
 - Wie stellt man sicher, dass auch nicht mehr genutzt wird?
 - Wenn 10 Gespräche (ca. 100kbit) über 1MBit laufen und der 11te kommt dazu, was dann?
- Die Applikation muss Grenzen setzen
 - Definition von Standorten und Subnetzen
 - Definition von Regionen und Standortverbindungen
 - Definition von Bandbreitenrichtlinien
- Beispiel Lync
 - Anrufer sendet Invite+SDP
 - Ziel erstellt eigenen SDP
 - CAC Reservation streicht
 - Rückmeldung abhängig

Monitoring

• "Klassisches Monitoring" (MRTG, Cacti, Nagios, ...)

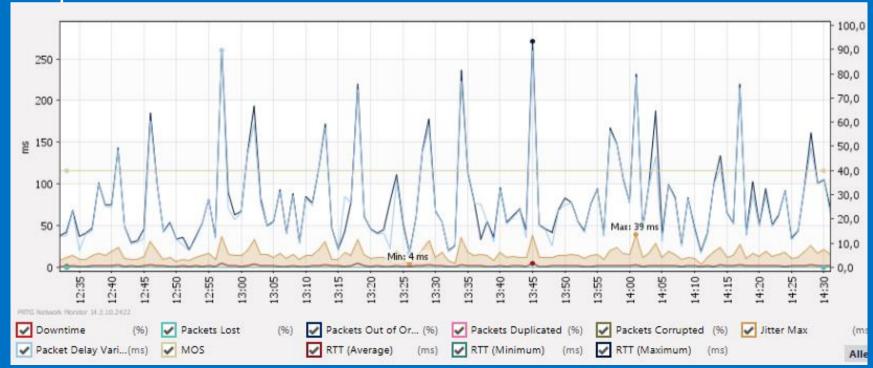

- Per SNMP all 5 Min die Bytes IN/OUT abfragen
- Differenz ermitteln
- Speichern und visualisieren
- Tage/Woche/Monat
- Mittelwerte über 5 Min!

Problemfall

- Kurzzeitige (>100ms) Peaks
- Werden nicht erkannt
- trügerische Sicherheit

Besseres Monitoring

- Router Queues (Packet Drop)
- QoS Reports
- "Dauerping"-Messung
- VoIP-Readyness



Andere Auswertungen

- QoS-Checks mit Probe auf der Gegenstelle
 - Stichprobe aber mit mehr Details
- NetFlow

Netzwerkkomponente sendet Verkehrsstatistiken

Monitoring der VoIP Plattform

- Alle Lync Clients melden am "Ende" einen QoE-Datensatz
 - Daten zum Rechner (CPU, RAM, Netzwerk, Interrupts, Versionen)
 - Daten zum RTP-Stream (Codec, Bandbreite, Jitter, MOS, Burst, Kandidaten)
 - Daten zur Session (Partner, Dienste, Standorte)
- Keine Dauerüberwachung
- Fehler und Probleme erst nachträglich erkennbar

Media Quality Summary Report									
Audio call summary									
Call type/endpoint type	Call volume	Poor call percentage	Call volume (wireless call)	Call volume (VPN call)	Call volume (external call)	Round trip (ms)	Degradation (MOS)	Packet loss	Jitter (ms)
⊞ UC Peer to Peer Calls	353	1.98 %	23	0	122	44.12	0.17	0.18 %	1.58
⊞ UC Conference Sessions	44	0.00 %	2	0	9	25.52	0.09	0.02 %	1.41
⊞ PSTN Conference Sessions	7	0.00 %	0	0	0	0.00	0.01	0.00 %	0.00
⊞ PSTN Calls: Media Bypass	429	1.63 %	0	0	0	2.07	0.00	0.03 %	3.26
⊞ PSTN Calls (Non-Bypass): UC Leg	489	0.20 %	14	0	121	6.70	0.05	0.02 %	0.59
⊞ PSTN Calls (Non-Bypass): Gateway Leg	379	6.60 %	0	0	0	3.00	0.00	0.00 %	8.00
Other Call Types	3	33.33 %	0	0	0	1.00	0.00	4.44 %	0.00

Voice Readyness Test

Planen

- Aufnehmen der aktuellen Nutzung (Erlang, Kanäle, Auslastung)
- Erfassen, welche Netzwerkänderungen anstehen
- Ermitteln, welche aktuelle Last ggfls. entfällt, z.B.
 - Datenverkehr zu "hosted Konferenz" (WebEx etc.)
 - Bandbreite von TK-Kopplungen per H.323 o.ä.
 - Weniger Mails durch Instant Messages
- Abschätzen, wie die Akzeptanz zunehmen wird
 - Mehr Konferenzen oder Desktop Sharing
 - VoIP on Top wenn "2-Draht Telefon" abgebaut wird

Simulieren

- Teilstecken zur Simulation bestimmen
- Probes verteilen, Last simulieren und Auswerten

Es gibt leider keine "einfache" Antwort

Weitere VoIP-Themen

- Weiterleitung und Umleitung im Verbund
- Media Bypass
- Comfort Noise und Silence Detection
- T.38-Fax und Modemübertragungen
- RingTone: Was klingelt wann und wo?
- Music on Hold
- Gesprächsaufzeichnung
- Telefone und Provisioning
- Rufnummernmanagement
- TK-Features (Parken, Gruppenruf, Ranholen,)
- Headset: Qualität und Eignung

